Ari Constitution of the second DR WEN LEI (Orcid ID: 0000-0003-1164-0233) DR XIAOHONG WANG (Orcid ID: 0000-0002-5065-2176) Article type : Rapid Communication # Controllable τ_f value of barium silicate microwave dielectric ceramics with different Ba/Si ratios Wen Lei^{a,b,*}, Zheng-Yu Zou^{a,b}, Ze-Hao Chen^{a,b}, Burhan Ullah^{a,b}, Aurang Zeb^c, Xue-Kai Lan^{a,b}, Wen-Zhong Lu^{a,b,*}, Gui-Fen Fan^{a,b}, Xiao-Hong Wang^{a,b}, Xiao-Chuan Wang^{a,b} ^a School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China ^b Key Lab of Functional Materials for Electronic Information (B), Ministry of Education, Wuhan 430074, P. R. China ^c Department of Physics, Islamia College Peshawar, Peshawar 25120, Pakistan * Corresponding author. Tel.: +86 27 8755 6493; fax: +86 27 8754 3134. E-mail address: wenlei@mail.hust.edu.cn (W. Lei); lwz@mail.hust.edu.cn (W.-Z. Lu) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jace.15205 ## Abstract Ba_{1+1/M}[Si₂O_{5+1/M}] low-permittivity microwave dielectric ceramics are prepared using the conventional solid-state method. Pure phases are obtained in barium silicates with M=1, 3, 4, 5, and ∞ , except for M=7, in which two phases, Ba₅Si₈O₂₁ and BaSi₂O₅, are observed. As the complexity of the crystal structure described by the Shannon information per reduced unit cell increases, the τ_f value tends to change from a negative to a positive value, except for M=5, which has the highest complexity. A single Ba₅Si₈O₂₁ phase with ε_r anomaly peak at -180 °C exhibits a rare positive τ_f value (+25 ppm/°C), which is a novel temperature compensator. Keywords: Silicates; Electroceramics; Dielectric properties #### 1. Introduction Low-permittivity (ε_r < 15) silicate microwave dielectric ceramics such as $M_2 SiO_4$ (M=Ba, Zn, Mg, Co, and Ni), 1,2 ($Sr_{1-x}A_x$) $_2$ ($Zn_{1-x}B_x$) Si_2O_7 (A=Ca, Ba and B=Co, Mg, Mn, Ni), $^{3-6}$ $MAl_2Si_2O_8$ (M=Ba, Sr, and Ca), 7,8 Mg $_2$ Al $_4$ Si $_5$ O $_{18}$, 9 Sr $_2$ Al $_2$ SiO $_7$, 10 and LiRe $_9$ (SiO $_4$) $_6$ O $_2$ (Re=rare earth elements), 11 have attracted considerable scientific attention because they can be used for various applications, such as high-frequency substrates, wave-transparent windows, dielectric antennas, high-accuracy capacitors, and millimeter-wave components. cross-coupling with conductors, and shorten the time for electronic signal transition.¹² Moreover, high quality factor ($Q \times f$) is required to increase the selectivity and near-zero temperature coefficient of the resonant frequency (τ_f) to ensure the stability of the frequency against temperature changes. However, low-permittivity microwave dielectric ceramics exhibit generally high-magnitude negative τ_f values according to the ε_r - τ_f relationship. ¹³⁻¹⁵ In general, temperature compensated dopants with a large positive τ_f value, such as TiO₂, CaTiO₃, and SrTiO₃, are used in conventional processes in air to control the τ_f value of low-permittivity microwave dielectric ceramics. ¹⁶ Occasionally, this measure encounters difficulties, including (1) the reaction between dopants and matrix, such as TiO₂ and Co₂TiO₄, to form CoTiO₃ with a negative τ_f value, ¹⁷ and (2) the reduction of Ti⁴⁺ ions at high temperature or reducing atmosphere, which drastically deteriorates the quality factor. ¹⁸ Single-phase $Ba_5Si_8O_{21}$ low-permittivity microwave dielectric ceramic with abnormally positive τ_f value has been discovered. The ceramic will provide another option to achieve stable frequency or permittivity characteristics against temperature. In barium silicates, the microwave dielectric properties of Ba_2SiO_4 ($\varepsilon_r = 13.1$, $Q \times f = 17,900$ GHz, $\tau_f = -17$ ppm/°C)¹⁹ and $BaSi_2O_5$ ($\varepsilon_r = 7.1$, $Q \times f = 15,040$ GHz, $\tau_f = -57.8$ ppm/°C)²⁰ have been reported. Other barium silicates with different Ba/Si ratios from 1:1 to 1:2 also exhibit low-permittivity microwave dielectric properties. The τ_f values of these silicates are closely related to the crystal structure and structural complexity. The concept of structural complexity is popular in mineral or crystal fields. However, a quantitative definition of crystal structure complexity, which is described by the Shannon information per reduced unit cell ($^{str}I_{G, total}$), as shown in Eq. (1), was not established until recently: $^{21, 22}$ $$^{str}I_{G,total} = -v \sum_{i=1}^{k} \frac{m_i}{v} \log_2(\frac{m_i}{v})$$ (1) $$v = \sum_{i=1}^{k} m_i \tag{2}$$ where m_i and v are the multiplicity of the ith crystallographic orbit and the number of atoms in the reduced unit cell, respectively; and k is the number of crystallographic orbits in the structure. All the lattice structures in barium silicates include [SiO4] tetrahedrons and form a tetrahedral chain or 1-D structure for BaSiO₃, Ba₂Si₃O₈, Ba₅Si₈O₂₁, and Ba₃Si₅O₁₃ and a layered or 2-D structure for BaSi₂O₅. For the 1-D and 2-D structures, the tetrahedral chains are *zweier*, which have two [SiO4] tetrahedrons in their repeat units. Therefore, $Ba_{1+1/M}[Si_2O_{5+1/M}] \text{ can be adopted to describe the barium silicate according to the multiplicity (or number) of single silicate chain (<math>M$). The layered structure of the BaSi₂O₅ consists of an infinite number of single chain, that is, $M = \infty$. The phase compositions, lattice structures, and microwave dielectric properties of $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics were investigated in this study. A relation between the structural complexity and the τ_f value of the ceramics with a single-phase structure was also established. #### 2. Experimental procedure The Ba_{1+1/M}[Si₂O_{5+1/M}] (*M*=1, 3, 4, 5, 7, and ∞) ceramics were prepared by conventional solid-state method using reagent grade BaCO₃ (99.8%, Shandong Boshan Chemical Reagent Co., Ltd, China) and SiO₂ (99.0%, Shanghai Hengxin Chemical Reagent Co., Ltd, China) powder as raw materials. According to desired stoichiometry, the raw materials were weighed to ball milled in a polyethylene jar for 5 h using ZrO₂ balls with deionized water. After drying at 85 °C, the mixtures were calcined in air at 1100 °C for 3 h with a heat rate of 5 °C/min. And then the powders were uniaxially pressed into samples with dimensions of 12 mm in diameter and approximately 6 mm in height under a pressure of 150 MPa. After sintered at densification temperature of 1200-1300 °C for 3 h at a heating rate of 5 °C/min, these samples were cooled at a rate of 2 °C/min down to 600 °C and then naturally cooled in the furnace. The XRD data were obtained using X-ray diffraction (XRD, XRD-7000, Shimadzu, Kyoto, Japan) using CuK α radiation. The ε_r -T curve was tested at the temperature from -250 to 200 °C using an Agilent 4294A impedance analyzer (Aglient Technologies, Santa Clara, USA) and VDMS-2000 measuring system (Partulab, Wuhan, China). The ε_r and the unloaded $Q \times f$ value were measured at about 12.5 GHz in the TE₀₁₁ mode by Hakki and Coleman method ²³ using a network analyzer (Agilent E8362B, Agilent Technologies, Santa Clara, USA) and parallel silver boards. The τ_f value in the temperature range of 25 °C - 80 °C was calculated by Eq. (3): $$\tau_{\rm f} = \frac{1}{f(T_0)} \frac{[f(T_1) - f(T_0)]}{T_1 - T_0} \tag{3}$$ where $f(T_1)$ and $f(T_0)$ represent the resonant frequency at T_1 (80 °C) and T_0 (25 °C), respectively. #### 3. Results and discussion Fig. 1 shows the XRD patterns of $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics sintered at densification temperature for 3 h in air. A single phase can be obtained in the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics for M=1, 3, 4, 5, and ∞ , corresponding to orthorhombic $BaSiO_3$ (Fig. 1(a)), monoclinic $Ba_2Si_3O_8$ (Fig. 1(b)), monoclinic $Ba_5Si_8O_{21}$ (Fig. 1(c)), monoclinic $Ba_3Si_5O_{13}$ (Fig. 1(d)), and orthorhombic $BaSi_2O_5$ (Fig. 1(f)), respectively. By contrast, mixture phases, including $Ba_5Si_8O_{21}$ and $BaSi_2O_5$, are observed in the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramic for M=7, as shown in Fig. 1(e). Table 1 shows the structural complexity, phase compositions, and microwave dielectric properties of $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics sintered at densification temperature for 3 h in air. All the barium silicates can be sintered well at 1200 °C -1300 °C and reach high relative density (ρ_r) above 92.0%. All the average linear coefficients of the thermal expansion (α_L) are approximately 10 ppm/°C. The ε_r and $Q\times f$ values of the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ (M=1) ceramic are vastly different from the values of other compositions. The ε_r value of the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ (M=1) is significantly higher, and its $Q\times f$ value ($Q\times f$ =6,600 GHz) is significantly lower (Table 1), which results from the weak ferroelectric effect in BaSiO₃ ceramic. ⁵ The ε_r value slightly decreases from 8.2 (M=3) and 6.7 (M= ∞) for the Ba_{1+1/M}[Si₂O_{5+1/M}] (M > 1) ceramics. Meanwhile, the Q×f value reduces initially from 29,800 GHz at M = 3 to 12,500 GHz at M = 5 (single phase) and then increases gradually to 59,500 GHz at M = ∞ . The τ_f value likewise changes from a negative to a positive value and reaches the maximum value of +37 ppm/°C at M = 5 (mixture phases), and then decreases to –28 ppm/°C at M = ∞ . The phase composition and τ_f value for M=5 are sensitive to the sintering temperature. When sintering temperature increases from 1200 °C to 1250 °C, a pure monoclinic Ba₃Si₅O₁₃ phase is achieved and τ_f value varies from +37 ppm/°C to –36 ppm/°C. However, density does not change. This phenomenon will be explained later. The positive τ_f value is very rare for low-permittivity microwave dielectric ceramics with a single-phase structure, especially for those with ε_r <10. To date, only a single-phase CaSnSiO₅ ceramic with a low ε_r value of 9.08 has exhibited a rare positive τ_f value (+35 ppm/°C). Por low-permittivity microwave dielectric ceramics, ionic displacement polarization plays a dominant role in controlling the ε_r value and increases along with the increase in temperature. Therefore, the temperature coefficient of the dielectric constant (τ_ϵ) is a typical positive value, and the τ_f value subsequently takes on a negative value, as shown in Eqs. (4) and (5): $$\tau_{\rm f} = -(\alpha_{\rm L} + 0.5\tau_{\rm \epsilon}) \tag{4}$$ $$\tau_{\varepsilon} = \frac{1}{\varepsilon(T_0)} \frac{\left[\varepsilon(T_1) - \varepsilon(T_0)\right]}{T_1 - T_0} \tag{5}$$ where α_L is the linear thermal expansion coefficient of approximately 10 ppm/°C, and $\varepsilon(T_1)$ and $\varepsilon(T_0)$ are the relative permittivity at T_1 and T_0 , respectively. In this study, only one $Ba_5Si_8O_{21}$ phase can be confirmed directly to have a positive τ_f value (+25 ppm/°C). However, the nominal $Ba_{1+1/M}[Si_2O_{5+1/M}]$ (M=5 and 7) ceramics with mixture phases, namely, $Ba_5Si_8O_{21}$ and $BaSi_2O_5$, also exhibit a rare positive τ_f value (Table 1). For the $Ba_5Si_8O_{21}$ - $BaSi_2O_5$ two-phase system, $Ba_3Si_5O_{13}$ and $Ba_4Si_7O_{18}$ can be described theoretically through Eqs. (6) and (7), respectively, and their τ_f values can be calculated using the mixing rule shown in Eq. (8). $$Ba_3Si_5O_{13}=0.5Ba_5Si_8O_{21}+0.5BaSi_2O_5$$ (6) $$Ba_4Si_7O_{18} = 0.5Ba_5Si_8O_{21} + 1.5BaSi_2O_5$$ (7) $$\tau_{\rm f} = \sum_{i=1}^k \nu_i \tau_{\rm fi} \tag{8}$$ where v_i and τ_{fi} are the volume fraction and temperature coefficient of the resonant frequency of the ith phase, respectively. The molar mass of Ba₅Si₈O₂₁ (1247 g/mol) is much higher than that of BaSi₂O₅ (273 g/mol), while the theoretical density of Ba₅Si₈O₂₁ (3.92 g/cm³) is close to that of BaSi₂O₅ (3.70 g/cm³). Thus, the volume fraction of the BaSi₂O₅ phase can be neglected in the Ba₃Si₅O₁₃ ceramic with equal mole Ba₅Si₈O₂₁ and BaSi₂O₅ system. However, the molar amount of the BaSi₂O₅ phase is three times that of the Ba₅Si₈O₂₁ phase in the Ba₄Si₇O₁₈ ceramic with Ba₅Si₈O₂₁ and BaSi₂O₅ phases. Hence, the BaSi₂O₅ phase can effectively adjust the τ_f value to near zero. The calculated τ_f value of Ba₄Si₇O₁₈ ceramic is approximately +3 ppm/°C, which agrees well with the measured value of +2 ppm/°C. However, the calculated τ_f value of Ba₃Si₅O₁₃ ceramic is lower than the measured value, which could be attributed to other reasons that will be identified later. A special lattice structure and a reduction in polarization with temperature for low-permittivity microwave dielectric ceramics with abnormal τ_f value are expected to occur in Ba_{1+1/M}[Si₂O_{5+1/M}] ceramics with positive τ_f value. Therefore, the dependence of ε_r and $\tan\delta$ on temperature was measured for the Ba_{1+1/M}[Si₂O_{5+1/M}] (M=4 and 5) ceramics sintered at different densification temperatures. The results are shown in Fig. 2. An ε_r anomaly peak appears along with an increase in dielectric loss at -180 °C in the Ba_{1+1/M}[Si₂O_{5+1/M}] (M=4) ceramic (see Fig. 2(a)). The ε_r value at room temperature and 100 kHz is close to the value of the microwave frequency (approximately 12.5 GHz) (Table 1). This outcome indicates that the total polarization is nearly independent from the frequency range of 100 kHz - 12.5 GHz because of the dominant ion polarization in the Ba₅Si₈O₂₁ phase. When the temperature reaches -180 °C, the ε_r value increases sharply to 29.8 (see Fig. 2(a)), which is approximately fourfold of the ε_r value at room temperature. The ε_r anomaly peak could correspond to a paraelectric-ferroelectric phase transition. However, exhibiting a low relative permittivity at low temperature for the ferroelectric phase is rare. Therefore, further investigations should be performed to understand this phenomenon. The larger negative τ_{ϵ} value at the measured temperature scale from 25 °C to 80 °C was observed in the Ba_{1+1/M}[Si₂O_{5+1/M}] (M=5) ceramic sintered at 1200 °C with Ba₅Si₈O₂₁ and BaSi₂O₅ phases compared with that in the Ba_{1+1/M}[Si₂O_{5+1/M}] (M=4) ceramic with pure Ba₅Si₈O₂₁ phase, as shown in Fig. 2(b). The increase in slope of the ϵ_r -T curve could have resulted from the right shift of the permittivity anomaly peak because of the increasing tilting and distortion of [SiO4] tetrahedrons in the Ba₅Si₈O₂₁ lattice structure induced by the BaSi₂O₅ phase. Therefore, the Ba₅Si₈O₂₁ phase in the nominal Ba₃Si₅O₁₃ ceramic with two phases exhibits a higher τ_f value than the single-phase Ba₅Si₈O₂₁ ceramic (see Table 1). Eq. (4) can be used to qualitatively explain the opposite variation trend of τ_f and τ_ϵ values. However, the relations between τ_f and τ_ϵ values cannot absolutely follow Eq. (4) because of the different measured frequencies of τ_f (at about 12.5 GHz) and τ_ϵ (at 100 kHz and 1 MHz) and the strong nonlinear α_L curve (not shown). When the Ba_{1+1/M}[Si₂O_{5+1/M}] (M=5) ceramic sintered at 1250 °C forms a single Ba₃Si₅O₁₃ phase with monoclinic structure, its ϵ_r -T curve clearly changes and shows a positive slope. This result suggests that the single-phase Ba₃Si₅O₁₃ ceramic possesses a negative τ_f value according to Eq. (4). A close relation between structural complexity described by the ^{str} $I_{G, total}$ and the τ_f value of Ba_{1+1/M}[Si₂O_{5+1/M}] ceramics is also observed, as shown in Table 1. As the crystal structure complexity increases, the τ_f value tends to change from a negative to a positive value, except for M=5, which has a single monoclinic structure of the highest crystal structure complexity. The outcome indicates that the τ_f value could be related to other factors, such as the tilting and distortion of [SiO4] tetrahedrons. ²⁵ #### 4. Conclusions $Ba_{1+1/M}[Si_2O_{5+1/M}]$ in barium silicates sintered at 1200 °C -1300 °C for 3 h in air can be adopted to describe silicates according to the multiplicity (or number) of single silicate chain (M). A single phase can be obtained in the ceramics for M=1, 3, 4, 5, and ∞ , corresponding to orthorhombic BaSiO₃, monoclinic Ba₂Si₃O₈, monoclinic Ba₅Si₈O₂₁, monoclinic Ba₃Si₅O₁₃, and orthorhombic BaSi₂O₅ phase, respectively. By contrast, mixture phases, including $Ba_5Si_8O_{21}$ and $BaSi_2O_5$, are observed in the ceramic for M=7. The ε_r value of the $BaSiO_3$ $(\varepsilon_r=11.1)$ is considerably higher than that of other compositions and its Q×f value $(Q\times f=6,600)$ GHz) is considerably lower, which results from the weak ferroelectric effect in BaSiO₃ ceramic. The ε_r value slightly decreases from 8.2 (M=3) and 6.7 (M= ∞) for the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ (M > 1) ceramics, and the $Q \times f$ value decreases initially from 29,800 GHz at M = 3 to 12,500 GHz at M = 5, and then increases gradually to 59,500 GHz at $M = \infty$. As the complexity of the crystal structure increases, the τ_f value tends to change from a negative to a positive value, except for M=5, which has a single phase of the highest crystal structure complexity. A single Ba₅Si₈O₂₁ phase with ε_r anomaly peak at -180 °C exhibits a rare positive τ_f value (+25 ppm/°C), which is a novel temperature compensator. Especially for M=5, the phase compositions and τ_f value are sensitive to sintering temperature. When the sintering temperature increases from 1200 °C to 1250 °C, a pure monoclinic $Ba_3Si_5O_{13}$ phase is achieved and the τ_f value varies from +37 ppm/°C to -36 ppm/°C. Therefore, the τ_f value of the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics is closely related to the complexity of the crystal structure, the phase compositions, and the tilting and distortion of [SiO4] tetrahedrons. #### **Acknowledgement** This work was supported by the National Natural Science Foundation of China (NSFC-51572093 and 51772107). The authors are grateful to Dr. Xuefeng Chen in Key laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences for the ε_r – T curve measurement and analysis. #### References - Zhang C, Zuo R, Zhang J, et al. Structure-dependent microwave dielectric properties and middle-temperature sintering of forsterite (Mg_{1-x}Ni_x)₂SiO₄ ceramics. *J. Am. Ceram. Soc.* 2015; 98:702-710. - 2. Chen HW, Su H, Zhang HW, et al. Low-temperature sintering and microwave dielectric properties of $(Zn_{1-x}Co_x)_2SiO_4$ ceramics. *Ceram. Int.* 2014; 40: 14655-14659. - 3. Joseph T, Sebastian MT. Microwave dielectric properties of $(Sr_{1-x}A_x)_2(Zn_{1-x}B_x)Si_2O_7$ ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). *J. Am. Ceram. Soc.* 2007; 93:147-154 . - Zou ZY, Lan XK, Lu WZ, et al. Novel high Curie temperature Ba₂ZnSi₂O₇ ferroelectrics with low-permittivity microwave dielectric properties. *Ceram. Int.* 2016; 42:16387-16391. - 5. Zou ZY, Chen ZH, Lan XK, et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba₂Zn_(1+x)Si₂O_(7+x) ceramics. *J. Eur. Ceram. Soc.* 2017; 37:3065-3071. - 6. Yokoi A, Ogawa H, Kan A, et al. Relationship between crystal structure and microwave dielectric properties of melilite-type ceramic. *J. Eur. Ceram. Soc.* 2007; 27:2989-2993. - Lei W, Ang R, Wang XC, et al. Phase evolution and near-zero shrinkage in BaAl₂Si₂O₈ low-permittivity microwave dielectric ceramics. *Mater. Res. Bull.* 2014; 50:235-239. - 8. Krzmanc MM, Valant M, Suvorov D. The synthesis and microwave dielectric properties of SrxBa_{1-x}Al₂Si₂O₈ and Ca_yBa_{1-y}Al₂Si₂O₈ ceramics. *J. Eur. Ceram. Soc.* 2007; 27:1181-1185. - 9. Song K, Liu P, Lin H, et al. Symmetry of hexagonal ring and microwave dielectric properties of (Mg_{1-x}Ln_x)₂Al₄Si₅O_{18+x} (Ln=La, Sm) cordierite-type ceramics. *J. Eur. Ceram. Soc.* 2016; 36:1167-1175. - 10. Manu KM, Karthik C, Ubic R, et al, Effect of Ca²⁺ substitution on the structure, microstructure, and microwave dielectric properties of Sr₂Al₂SiO₇ ceramic. *J. Am. Ceram. Soc.* 2013; 96:3842-3848. - 11. Manu KM, Karthik C, Leu IC, et al. Crystal structure and microwave dielectric properties of LiRE₉(SiO₄)₆]O₂ ceramics (RE= La, Pr, Nd, Sm, Eu, Gd, and Er,). *J. Am. Ceram. Soc.* 2013; 96:1504-1511. - 12. Dhanya J, Basiluddeen AV, Ratheesh R. Synthesis of ultra low temperature sinterable Na₂Zn₅(MoO₄)₆ ceramics and the effect of microstructure on microwave dielectric properties. *Scripta Mater.* 2017; 132:1-4. - 13. Reaney IM, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. *J. Am. Ceram. Soc.* 2006; 89:2063-2072. - 14. Sebastian MT, Ubic R, Jantunen H. Low-loss dielectric ceramic materials and their properties. *Int. Mater. Rev.* 2015; 60(7): 392-412. - 15. Sebastian MT, Ubic R, Jantunen H. Microwave materials and applications. John Wiley & Sons, 2017. - Fang L, Guo HH, Fang WS, et al. BaTa₂V₂O₁₁: a novel low fired microwave dielectric ceramic. J. Eur. Ceram. Soc. 2015; 35:3765-3770. - 17. Lei W, Lu WZ, Wang XC. Temperature compensating ZnAl₂O₄-Co₂TiO₄ spinel-based low-permittivity microwave dielectric ceramics *Ceram. Int.* 2012; 38:99-103. - 18. Lei W, Lu WZ, Zhu JH, et al. Effects of heating rate on microstructures and microwave dielectric properties of (1-x)ZnAl₂O₄-xTiO₂ (x = 0.21) ceramics. *Ceram. Int.* 2009; 35:277-280. - 19. Joseph T, Sebastian MT. Microwave dielectric properties of alkaline earth orthosilicates M₂SiO₄ (M=Ba, Sr, Ca). *Mater. Lett.* 65, 891-893 (2011). - 20. Tan XG, Zhou HF, Huang J, et al. Phase composition, crystal structure, and microwave dielectric properties of 4BaO-4SiO₂-V₂O₅ composite ceramic. *J. Electron. Mater.* 2017; doi: 10.1007/s11664-017-5574-x. - 21. Krivovichev SV. Structural complexity of minerals: information storage and processing in the mineral world. *Mineral. Mag.* 2013; 77:275-326. - 22. Gorelova LA, Bubnova RS, Krivovichev SV, et al. Thermal expansion and structural complexity of Ba silicates with tetrahedrally coordinated Si atoms, *J. Solid State Chem.* 2016; 235:76-84. - 23. Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. *IRE Trans. Microwave Theory Technol.* 1960; 8:402-410. - 24. Wu SP, Chen DF, Jiang C, et al. Synthesis of monoclinic CaSnSiO₅ ceramics and their microwave dielectric properties. *Mater. Lett.* 2013; 91:239-241. - 25. Rawal R, McQueen AJ, Gillie LJ, Hyatt NC, McCabe EE, Samara K, Alford NM, Feteira A, Reaney IM, Sinclair DC. Influence of octahedral tilting on the microwave dielectric properties of A₃LaNb₃O₁₂ hexagonal perovskites (A=Ba, Sr). *Appl. Phys. Lett.* 2009; 94: 192904. #### **Figure Captions** FIG. 1. XRD patterns of $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics sintered at densification temperature for 3 h in air: (a) M=1, 1200 °C; (b) M=3, 1300 °C; (c) M=4, 1200 °C; (d) M=5, 1250 °C; (e) M=7, 1200 °C; (f) $M=\infty$, 1250 °C. FIG. 2. The dependence of ε_r and $\tan\delta$ on temperature for the $Ba_{1+1/M}[Si_2O_{5+1/M}]$ ceramics: (a) M=4, sintered at 1200 °C; (b) M=5, sintered at 1200 °C and 1250 °C. ### **Table Captions** Table 1 Structural complexity, phase compositions, and microwave dielectric properties of $Ba_{1+1/M}[Si_2O_{5+1/M}] \ ceramics \ sintered \ at \ densification \ temperature \ for \ 3 \ h \ in \ air.$ | <i>M</i> value | T _{sint} (°C) | Structural complexity ²² (bits/cell) | Phase compositions | $ ho_a$ (g/cm 3 | ρ _r
(%) | α _L
(ppm/°C
) | f _r
(GHz) | $oldsymbol{arepsilon}_{r}$ | Q×f
(GHz) | τ _f
(ppm/°C
) | |----------------|------------------------|---|--|--------------------|-----------------------|--------------------------------|-------------------------|----------------------------|--------------|--------------------------------| | <i>M</i> =1 | 1200 | 46.439 | orthorhombic BaSiO ₃ | 4.10 | 92.
4 | 9.82 | 11.7 | 11.1 | 6,600 | -35 | | <i>M</i> =3 | 1300 | 192.423 | monoclinic Ba₂Si₃O ₈ | 3.91 | 98.
6 | 11.7 | 13.1 | 8.2 | 29,800 | -37 | | M=4 | 1200 | 281.947 | monoclinic Ba₅Si ₈ O ₂₁ | 3.63 | 92.
6 | 10.6 | 12.4 | 7.3 | 16,700 | +25 | | | 1200 | _ | Ba ₅ Si ₈ O ₂₁ and BaSi ₂ O ₅ | 3.46 | | _ | 12.6 | 7.1 | 14,800 | +37 | | <i>M</i> =5 | 1250 | 368.955 | monoclinic Ba ₃ Si ₅ O ₁₃ | 3.46 | 93.
5 | 11.8 | 12.7 | 6.9 | 12,500 | - 36 | | M=7 | 1200 | _ | Ba ₅ Si ₈ O ₂₁ and BaSi ₂ O ₅ | 3.61 | _ | 10.6 | 12.7 | 7.1 | 20,400 | +2 | | M=∞ | 1250 | 72.000 | orthorhombic BaSi₂O₅ | 3.40 | 92.
0 | 11.5 | 12.6 | 6.7 | 59,500 | -28 | T_{sint} : densification temperature, ρ_{a} : absolute density, ρ_{r} : relative density, α_{L} : average linear coefficient of thermal expansion, and f_{r} : resonant frequency.